viernes, 12 de diciembre de 2008

Esfera cornuda de Alexander

En topología, la esfera cornuda de alexander, cuyo exterior no es homeorfo al exterior de la 2-esfera canónica en R3. Es una 2-esfera embebida en R.

Fue descubierta en 1924 por el matemático James Alexander como un ejemplo patológico que mostraba la imposibilidad de generalizar el Teorema de la curva de Jordan-Schönflies a dimensiones superiores.

Descripción informal

Descrita de modo informal, se construye, como muestra la figura, sacando dos "cuernos" a una esfera, aproximándolos, dividiendo en dos cada uno de los cuernos anteriores y volviéndolos a aproximar, repitiendo el proceso indefinidamente.
Representa un objeto topológicamente equivalente a la 2-esfera canónica de R3, pero embebido en R3 de forma muy diferente. Si nos fijamos en el exterior de la esfera cornuda de Alexander, encontraremos que la esfera se encuentra anudada. En una esfera canónica siempre podremos liberar una cuerda atada en su exterior, pero en la esfera cornuda de Alexander será imposible liberar una cuerda que tenga que pasar a través de los cuernos entrelazados.
Así, del mismo modo que todos los nudos como espacios topológicos son homeomorfos a una circunferencia, pero nudos no equivalentes pueden tener exteriores no homeomorfos, la esfera canónica de R3 y la esfera cornuda de Alexander son homeomorfas y sus exteriores no.

Un poco de historia

En 1909 se completó la demostración del Teorema de la curva de Jordan-Schönflies. Como consecuencia directa del mismo, quedaba demostrado que cualquier curva cerrada simple dividía el plano en dos regiones: la interior, homeomorfa al interior del disco unidad, y la exterior, homeomorfa al exterior del mismo disco.
En 1921, J. W. Alexander buscaba un análogo en dimensión superior de este teorema. Cuando creía tener probado este resultado, descubrió un fallo. En 1924 descubrió como contraejemplo la esfera cornuda: su exterior no era homeomorfo al exterior de la esfera canónica.

0 comentarios: